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ON A VARIATIONAL DESCRIPTION OF MAGNETOHYDRODYNAMIC
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SUMMARY

Itis shown that Prigogine’s evolution criterion describing dissipative hydrodynamic processes may be extended
to magnetohydrodynamics. This is achieved by defining appropriately the generalized fluxes and forces. As
illustrative example, Hartmann's flow is considered.

1. Introduction

In 1961, Prigogine [1] formulated an evolution criterion for dissipative
processes. Starting from the well known property that the rate of entropy
production in a volume 2 is of the form

P = fJaXadQ,(**) (1.1)

where J, and X, denote respectively the generalized fluxes and forces,
Prigogine stated that, under time independant boundary conditions, the
rate of entropy production can only decrease when the fluxes are main-
tained constant. This may be expressed as:

oxP 0 Xy
_t__fJ"‘at dQ < 0. (1.2)

Later on, Prigogine and Glansdorff [2-5] extended this principle in order
to include mechanical reversible processes as well. This is done by in-
troducing a functional O, called generalized entropy production, whose
time derivative is always negative when the system is evoluting and equal
to zero when the steady state is reached:

90X}

QQ: I —_——
5t Jaat d? < 0, (1.3)

now, the generalized fluxes Jy and forces X/ contain not only irreversible
but also reversible contributions.

One of the characteristics of Prigogine and Glansdorff's theory is the
arbitrariness in the definition of fluxes and forces. Recently, Nihoul has
shown [6] that by defining appropriately fluxes and forces, principle (1.2)
is still fulfilled, even when the evolution of the considered system is governed
by mechanical phenomena such as convection. Nihoul proceeds as follows:
he starts from a result established by Eckart [7] that the rate of entropy
production may still be written in the form (1.1) in the presence of con-

* Institut de Mathématique, 185, Avenue des Tilleuls, Ligge.
{*) The sum convention on repeated indices is used throughout this paper,
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vection. Nihoul calculates then the rate of entropy production within a
volume 2 moving with the fluid and operates the separation between fluxes
and forces by selecting as fluxes those factors whose divergence equals the
material derivative of kinematical fundamental quantities (as velocity, total
energy, etc...).

Nihoul's considerations are limited to incompressible fluids. In a previous
note [8] we have suggested another separation procedure of the fluxes and
forces which has the advantage of being more easily extended to compressible
systems. On the one hand, we choose the fluxes so that their divergence
expresses the rate of local variation (and not material variation as in Nihoul's
work) of kinematical quantities. On the other hand, we define the forces from
the expression of the rate of entropy production calculated within a fixed
volume (instead within a moving volume as Nihoul did) and written in the
form (1.1).

It must be noted that choosing a local formulation in order to define the
fluxes is not new and can be found e.g. in references [9] and [10].

In the present work, we extend the analysis developed in reference [8:%
to conducting fluids. We show in particular that Prigogine's principle (1.2
remains valid for a magnetohydrodynamic flow, i.e. including dissipative
processes as well as mechanical and magnetic ones.

After determining generalized fluxes and forces (§2), we show (§3) that,
in the case of incompressible conducting fluids, the rate of entropy pro-
duction, with constant fluxes, is either negative or equal to zero. Werestrict
our analysis to incompressible fluids for two reasons: firstly, it is the
most usual situation in magnetohydrodynamics; secondly, the extensionto com~
pressible conducting fluids presents no difficulty.

In many cases, the evolution principle may be written in the form of a
total differential. This is an important fact because it offers the possibility
of using the techniques of the variational calculus to study the properties
of the systems. Inparticular, the Euler-Lagrange equations of the variational
problem are the conservation equations of the steady state. This property is
illustrated by the example of Hartmann's flow of an incompressible fluid (§4).

2. Generalized fluxes and forces.

In order to determine the generalized fluxes, let us first write the fun-
damental equations of magnetohydrodynamics. As in most magnetohydrodyna-
mic problems [10-12], displacement currents are neglected and Gauss'
law is ommited. It is also assumed that the electrical conductivity o,
the magnetic permeability 4, the mass density p and the dynamic viscosity
N are constant.

In addition, it is convenient instead of the usual notations E, B, J for
the electrical field, the magnetic field and the current density?_to—usE the
local Alfvén notations e, b, j defined by .

b = (up)‘%E»
e = (up)'%?_:
j = (u/p)% J.

For an incompressible fluid and using conventional electromagnetic M. K. S
units, the fundamental equations of magnetohydrodynamics may then be written
as:

v.v =0 {conservation of mass equation), (2.1)
ov . 2
Plat* Y VY] =-vpta(jab+nvy (2.2)

{(Navier- Stokes equation),
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p% (%v“e +%b2) = .V, [pg(%v2+€)+ pEA(XA E)+”'X+S+ApbA(VAE)]

(Energy equation), (2.3)
g—% = - VAe (Faraday's law), (2.4)
j=xe+tvAb) (Ohm's law), (2.5)
VAb =] (Ampere's law), (2.6)
V.b =0 (2.7)
with
X = (uo)

The quantity v is the fluid velocity, p the pressure, g the heat -flux, €
tiie specific internal energy, 7 the pressure tensor with rectangular Car-
tesian components

9vy  dvy
Tij = POy ‘”(ﬁ—j+5?i>' (2.8)
Let us now write equations (2.2), (2.3) and (2.4) in the form
9A, 5
5t_ =~ 5—){_] Jl] (29)

where Aj represents either a kinematical or a magnetic quantity, either a
combination of them and where Jjj represents the component of a generalized
flux, Introducing (2.6) in Navier-Stokes equation (2.2), we get

2
AL TN B TR R PR T AR
PRT TTPVidx, T Tex 26 0x Plidx;  ex \bx S T
defining T;; by
2
Tij = Tij +PV1V]‘ - p(ble - %b 6), (211)

1]

equation (2.10) is of the form

Pot T " 5x. Li

and it is clear that T;; may be chosen as the components of the first flux.
On the other hand, by elimination of € and j between relations (2.4),
(2.5) and (2.6), we obtain N -

gTb=—x_r.Vb+b.VV+7tV2b, (2.12)

which may also be expressed as

i S S

(2.13)

ijs

provided we define the flux H;; as
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Hij = Pbyvy - pviby - oA (2.14)

Finally, it appears directly from eq. (2.3) written in the form

0Qj

+e+1ip?) = - 5%, (2.15)

d

31 (3v°

that the third flux is Q]., given by

= 1 2 2
Qj = qjtpevy + 5 pvivy T bV - pvy by vy oy +

| op’ ab;
“AP{z b —— . (2.16)
i

Our task is now to find the generalized forces corresponding respectively
to the fluxes Tyj, Hj; and Qj Let us recall [ 8] that this is done by cal-
culating the expression of the entropy production within a fixed volume
containing the fluid.

For an incompressible fluid, the entropy variation per unit time in a
fixed volume is given by

g§: a_S = -1 o€
g fpat aQ fe o 8¢ an, (2.17)

where s denotes the specific entropy and 6 the absolute temperature.
Fquation (2.17) may still be written

9pb;

opVv;y -1
ST -6 b 5| A (2.18)

§_§ =f[9'1 a—at(pe%pv2+-§p bZ)—Q'lvi
and, taking into account relations (2.11), (2.14) and (2.16),

2Q; 9Ty 9H,.
_dS = -1 ._.___.J -1 H -1 H .
It f(-e 5%, LA 5 x; + 671 b; axj) ds2. (2.19)

By integration by parts, equation (2,19) is transformed into the sum of a
volume integral and a surface integral. The latter corresponds to ex-
change of entropy with the outside whereas the former represents the rate
of entropy production P within the volume and is given by

- 267t . a6 lv, 367 b, )
p J'(——-—-axj Q- 25N Ty - 8 im, ) de. (2. 20)

From this expression, it seems rather natural to define the generalized
forces corresponding to the fluxes Qj, Tj; and H;; respectively by

Ya! 39-1Vi 30! b;

9X;” 09Xy X

3. Euvolution cvitevion

We now show that in the case of an incompressible conducting fluid, sub-
mitted to time independent boundary conditions, the rate of entropy pro-
duction can only decrease when the fluxes J, are maintained constant,
namely
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P Xy
rY =fJ°‘Fc- df2 = 0, (3.1)

the sign equality refers to the steady state.
Let us derive in expression (2,20) the forces with regard to the time,
we obtain:

P 2 (267 2 (a6 v,
s {185 oo - (2]
o

Let us permute spatial and time derivatives and integrate by parts; the
boundary conditions being time independent, the surface integral vanishes and
eq. (3.2) becomes

-1
S J[oat s (of rpees) 22N
9t 3T §t \"2 "PETP3 ot ot

367'b, 8pb;
ae.

Toat et (3-3)
Introducing now in this equation the thermodynamic relation
de _ a6
a—t C a—¥ (C > O), (3. 4:)

where ¢ is the specific heat, we finally obtain:

oxP 2 9V 2 (abi)Z
X 2 (86 -1 i -1

which is undoubtedly a negative quantity, as requested,

Generally speaking, the quantity 8xP/8t is not a total differential.
However, as shown by Glansdorff and Prigogine [2-5], it is possible to
write 9yP/at in the form of a total differential by linearizing around the
stationary state, so that the techniques and the results of the calculus of
variation can be used. In particular, the Euler-Lagrange equations of the
variational problem are the steady state conservation equations; this property
is illustrated in the following example,

4. Havtmann's flow

Let us consider the flow of an incompressible viscous fluid between two
parallel solid planes when an uniform and constant external magnetic in-~
duction b, is applied perpendicular to the planes.

It is natural to assume that the fluid velocity is everywhere in the same
direction (we take it as the x; direction) and that the temperature is con-
stant and uniform throughout the fluid. The components of the velocity are
then

V]_a O.v 0- (4:. 1)

In addition, the components of the magnetic field, i.e. the sum of the
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applied field and the induced field, are supposed to be given by

bla O: b3:
with by = b, = constant, (4.2)
Let us now calculate 8xP /8t in the case of Hartmann's flow. This implies
that we preliminarily determine the expressions of the fluxes H;; and Tjj;
it is not necessary to evaluate Q; because the corresponding force 8671 /8x%;

is equal to zero here. The components Hj; and Tj; which are needed to
go further in the calculations are respectively:

obq
I—I11 = - pA 5;;: (4. 3)
9b1
H13 = - pviby - pA _3—;;, (4. 4)
2 2 2
T, =Pp+pvi+3(bg-by) (4. 5)
and
Bvl
T3 = -1 B_)E; - pbyb;. (4. 6)

Expression (3.2) of 8,P/8t reduces now to:
oxP 4 3 vy 5 9 Vvy o b;
—_— . — — + L | — —
9t 0 f 5t \ax Tu 5t \a x5 T1s 9%, Hn
+ |2 (?3-1- Hy3b d0 < 0 4.7
51 \ox, /| s 2 < (4.7)

and, with the help of egs. (4.3) to (4.6):
2
BXP 1 2 oV av1
= - PR RSN - Y R R G I Bl
a t 0 f{:[p-"P Vl + 2 (bO bl)] Bt axl + Tl 5_'6(3X3‘
(ab1>2 L0 (a b1>2 [ 5 /3%
I |l + 2 p A —— | + pby|b, 2] —_ |+
ati\ox otlax 0171 57!
1 3, 8 9y

ox 2
9 9b;y

It is possible to write 8xP/8t in the form of a total differential provided
we restrict ourselves to fluctuations in the neighbourhood of the stationary
state. Indeed, supposing the steady state characterized by the distribution

+
Q:‘Q,
+

B

+
N
o=

0 0
by, vy
and linearizing around the steady state, eq. (4.8) becomes(*):

*) 1t is not necessary to label p,7n and X with the supercript o because these quantities are constant.
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oxP 3 9 9 )\ 2
X ot a [)l_f.o 0,142 1 02] 21l !
at  ° atf{ [p FRAVD *E by - z(b) | FR T gy,
2
1 9by \2 1 ob; avy b
+§pk5;{—1 +§p7t-aT3- + pby blax vla3}d9
=9‘1a—atf¢> aQ < 0, (4. 9)

2
_ 2 9 02 avl avl
0 = -[p°+p(v({) +%b0-%(b1)] a—xl+%n =

ab,\” 8b, \? oV, b,

1 1 0 0

+§pl——axl + 5 pA -aT +pbO b1 5% +V1 ‘B—Xa (4.10)
3 3 :

It is important to note that functional @ depends on both the steady state
variables b), v, and the usual variables b;, v; and takes his minimum
values in the stationary state,

The Euler-Lagrange equations corresponding to (4,9) and (4.10) namely

8 a0 _ 080 _
9 x;

9 a0 _ 20

5%, ab1> 55, - O (4.12)
ox

v, = v, by = b (4.13)

and the fact that b, is constant and uniform give:

ov?
.0 0 02 _ 1.0 2] 9 _1 0 _
o [P0+ P 3D |+ g ngn + eoby) = 0, (4.14)
o b} 9 b,
e (1 o _ 1 0) -
pA 3%, (ax) TP gz, (7“ 5%,  Povi) T O (4.15)

Moreover, the magnetohydrodynamic relations (2.1) and (2.7)

V.Z=Oandv.9=‘0

imply that
0 0
8v1 b,
—==0 and — =0
0%, 9%y

so that the expressions (4.14) and (4.15) may finally be written in the
form
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0 0
32V1 + b 3b1 8pO (4. 16)
n 0o— ~ .
9x32 o x, 8%
2
0 bo1 avg )
7L____+b0_— 0 (4.17)
8X§ 8x3

which are the well-known steady state equations of Hartmann's flow (see
for instance ref,10).

The author wishes to record his gratitude to Professor Nihoul for his
interest in this research and his helpful comments on the manuscript.

REFERENCES

1) 1,PRIGOGINE, Introduction to Thermodynamics of Irreversible Processes, 2nd Edition, Wiley, N.Y., 1961,

2) P.GLANSDORFF and I.PRIGOGINE, Physica 30 (1964) 351.

3) [,PRIGOGINE and P,GLANSDORFF, Physica 31 (1965) 1242,

4) 1,PRIGOGINE, Non-Equilibrium Thermodynamics Variational Techniques and Stability, Univ, of Chicago
(1966) p.35.

5) P.GLANSDORFF, Non-Equilibrium Thermodynamics Variational Techniques and Stability, Univ. of
Chicago (1966) p.45.

6) J.NIHOUL, Journal de Mécanique 6, no 2, (1967) 171,

7) C.ECKART, Phys.Rev,58 (1940) 267.

8) G.LEBON, Bull.Soc.Roy.Sciences Liége 36, no 3-4, (1968) 1517

9) S.R. de GROOT and P,MAZUR, Non-Equilibrium Thermodynamics, North-Holland, 1962,

10) L.LANDAU and E,LIFSHITZ, Electrodynamics of Continuous Media, Pergamon, 1960.

11) J.SHERCLIFF, Textbook in Magnetohydronamics, Pergamon, 1965.

12) J.NIHOUL, Journal de Mé&canique, 2, no 3 (1963) 251,

[Received April 1, 1968
and in revised form June
10, 1968]



