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ON A V A R I A T I O N A L  D E S C R I P T I O N  O F  M A G N E T O H Y D R O D Y N A M I C  
SYSTEMS INCLUDING IRREVERSIBLE PROCESSES 

G. Lebon 

Mecanique Math~matique, Universit~ de Liege, Belgium(*) 

SUMMARY 

It is shown that Prigogine' s evolution criterion describing dissipative hydrodynamic processes may be extended 
to magnetohydrodynamics. This is achieved by defining appropriately the generalized fluxes and forces. As 
illustrative example, Hartmann's flow is considered. 

1. In troduct ion  

In 1961, Prigogine [I] formulated an evolution criterion for dissipative 
processes. Starting from the well known property that the rate of entropy 
production in a volume [2 is of the form 

P = f J~X~df2,(**) (i. I) 

where J~ and X~ denote respectively the generalized fluxes and forces, 
Prigogine stated that, under time independant boundary conditions, the 
rate of entropy production can only decrease when the fluxes are main- 
tained constant. This may be expressed as: 

OxP r 0 Xc~ 
8t = t J ~ d f 2  <_ 0. (1.2) 

Later on, Prigogine and Glansdorff [2-5] extended this principle in order 
to include mechanical reversible processes as well. This is done by in- 
troducing a functional ~), called generalized entropy production, whose 
time derivative is always negative when the system is evoluting and equal 
to zero when the steady state is reached: 

0t  a ~ - - -  dr? ~_ 0, (1.3) 

now, the generalized fluxes J~ and forces X" contain not only irreversible 
but also reversible contributlons. 

One of the characteristics of Prigogine and Glansdorff's theory is the 
arbitrariness in the definition of fluxes and forces. Recently, Nihoul has 
shown ~6] that by defining appropriately fluxes and forces, principle (i. 2) 
is still fulfilled, even when the evolution of the considered system is governed 
by mechanical phenomena such as convection. Nihoul proceeds as follows: 
h e  s t a r t s  f r o m  a r e s u l t  e s t a b l i s h e d  b y  E c k a r t  [7]  t h a t  t he  r a t e  of  e n t r o p y  
p r o d u c t i o n  m a y  s t i l l  b e  w r i t t e n  i n  t h e  f o r m  ( 1 . 1 )  i n  t h e  p r e s e n c e  o f  c o n -  
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vection. Nihoul calculates then the rate of entropy production within a 
volume ~ moving with the fluid and operates the separation between fluxes 
and forces by selecting as fluxes those factors whose divergence equals the 
material derivative of kinematical fundamental quantities (as velocity, total 
energy, etc...). 

Nihoul's considerations are limited to incompressible fluids. In a previous 
note [8] we have suggested another separation procedure of the fluxes and 
forces whichhas the advantage of being more easily extended to compressible 
systems. On the one hand, we choose the fluxes so that their divergence 
expresses the rate of local variation (and not material variation as in Nihoul's 
work) of kinematical quantities. On the other hand, we define the forces from 
the expression of the rate of entropy production calculated within a fixed 
volume (instead within a moving volume as Nihoul did) and written in the 
form (i.i). 

It must be noted that choosing a local formulation in order to define the 
fluxes is not new and can be found e.g. in references E9] and [i0 3. 

In the present work, we extend the analysis developed in reference [8] 
to conducting fluids. We show in particular that Prigogine's principle (i. 2) 
remains valid for a magnetohydrodynamic flow, i.e. including dissipative 
processes as well as mechanical and magnetic ones. 

After determining generalized fluxes and forces (w 2), we show (w 3) that, 
in the case of incompressible conducting fluids, the rate of entropy pro- 
duction, withconstantfluxes, is either negative or equal to zero. We restrict 
our analysis to incompressible fluids for two reasons: firstly, it is the 
most usual situation in magnetohydrodynamics; s econdly, the extension to com- 
pressible conducting fluids presents no difficulty. 

In many cases, the evolution principle may be written in the form of a 
total differential. This is an important fact because it offers the possibility 
of using the techniques of the variational calculus to study the properties 
of the systems. In particular, the Euler-Lagrange equations of the variational 
problem are the conservation equations of the steady state. This property is 
illustrated bythe example of Hartmann's flow of an incompressible fluid (w 

2. Generalized fluxes and forces.  

In order to determine the generalized fluxes, let us first write the fun- 
damental equations ofmagnetohydrodynamics. As in most magnetohydrodyna- 
mic problems El0-12], displacement currents are neglected and Gauss' 
law is ommited. It is also assumed that the electrical conductivity ~, 
the magnetic permeability/,t, the mass density p and the dynamic viscosity 
~7 are constant. 

In addition, it is convenient instead of the usual notations E, B, J for 
the electrical field, the magnetic field and the current density, to us~ the 
local Alfv~n notations e, b, j defined by. 

4 b = (,up) B, 

-�89 
e = ( , u p )  }~, 

j = ( u / p )  { J. 

For an incompressible fluid and using conventional electromagnetic M. K. S 
units, the fundamental equations of magnetohydrodynamics may then be written 
as: 

V. v = 0 (conservation of mass equation), (2. I) 

(0v 1 p ~ - ~ + v .  V v  = - V p  + p ( j ^ b ) + r ~ V _  _v ( 2 . 2 )  

(Navier- Stokes equation), 
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PS~ (�89 e +�89 = -V. [pV_ (�89 2 +e)+ Pb A(v A b)+ ~.v +q+ApbA(VAb)] 

(Energy equation), (2.3) 

a__b_b = _ VAe (Faraday's law), (2.4) 
8t 

j = l ( e + v A b )  ( O h m ' s  law) ,  ( 2 . 5 )  

~TA b = j ( A m p 6 r e ' s  l aw) ,  ( 2 . 6 )  

~7. b = 0 (2. 7) 

wi th  

-1 
x = (~ ,~) . 

The quantity v is the fluid velocity, p the pressure, q_ the heat -flux, c 
the specific internal energy, 7r the pressure tensor with rectangular Car- 
tesian components 

~ij = p6ij ~F~xj + ~ �9 (2. a) 

Let us now write equations (2.2), (2.3) and (2.4) in the form 

aAi 8 
- j . .  ( 2 . 9 )  

a t  a x j  ~J 

w h e r e  Ai  r e p r e s e n t s  e i t h e r  a k i n e m a t i c a l  o r  a m a g n e t i c  q u a n t i t y ,  e i t h e r  a 
c o m b i n a t i o n  of t h e m  and  w h e r e  J i j  r e p r e s e n t s  the c o m p o n e n t  of  a g e n e r a l i z e d  
f lux .  I n t r o d u c i n g  (2 .6)  in  N a v i e r - S t o k e s  e q u a t i o n  ( 2 . 2 ) ,  we ge t  

aVt ~Vi a(PSii) i a(b25ii ) Ob i +~ 8 labi l  
p ~ - -  =-pvj axj  - ox-----~ - ~ a x  i - pbj axj ~ x  i ~ - : . / ;~  (2. lo )  

defining Tij by 

b 2 Tij = ~rij +Pvivj - p(bibj - �89 6ij), (2.11) 

equation (2.10) is of the form 

avi a 
P a t  = a xj Tij 

and  it  i s  c l e a r  tha t  Tij  m a y  be c h o s e n  a s  the  c o m p o n e n t s  of  the f i r s t  f lux .  
On the o t h e r  hand ,  by  e l i m i n a t i o n  of  e and  j b e t w e e n  r e l a t i o n s  ( 2 . 4 ) ,  

( 2 . 5 )  and  ( 2 . 6 ) ,  we o b t a i n  

Ob _ v ~7 b + b. Vv + I~72b, (2.12) 
at . . . . .  

which may also be expressed as 

~bi a 
P a--~- - axj Hij' (2.13) 

provided we define the flux Hij as 
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8b t 
Hij = Pb i vj - p v i bj - p)t ff'~j" (2. 14) 

F ina l ly ,  it appears  d i r ec t l y  f rom eq. (2. 3) wr i t ten  in the f o r m  

~Qj 
0 i (2.15) P ~ (g v2+e+ �89  2) - 8x i 

that the third flux is Qj, given by 

Qj = qj+pevj + �89 ov2vj + pb2vj - Pvibiv j +Icijvi+ 

( �89 ObJl 
- ~ . p  - - _  b i -~x~] " (2.16) 

Our task is now to find the generalized forces corresponding respectively 
to the fluxes Tij, Hij and Qj. Let us recall [8] that this is done by cal- 
culating the expression of the entropy production within a fixed volume 
containing the fluid. 

For an incompressible fluid, the entropy variation per unit time in a 
fixed volume is given by 

dS_f 8s f d t p ~ dr2 = o ' lp  b'-}- dr2, (2.17) 

where  s denotes  the specif ic  en t ropy  and 0 the absolute  t e m p e r a t u r e .  
Equat ion (2.17) m a y  st i l l  be wr i t t en  

i[o o,-  dS _ -1  t(o +�89 -gi--J d t  - b t dr2 (2.18) 

and, taking into account  r e la t ions  (2.11), (2.14) and (2.16),  

dS - f (_0-1DQJ 0-1 0Ti j  OHij/  
d t  Ox-'-~ + vi '0xj  + 0"1 bi " ~ j ]  dr2. (2. 19) 

By in tegra t ion  by pa r t s ,  equation (2.19) is t r a n s f o r m e d  into the sum of a 
volume in t eg ra l  and a su r f ace  in tegra l .  The l a t t e r  c o r r e s p o n d s  to ex-  
change of en t ropy  with the outside w h e r e a s  the f o r m e r  r e p r e s e n t s  the ra te  
of en t ropy  product ion  P within the volume and is given by 

f /~0"1 00"1w 0 0 " l b i  / P = \ S x j  Qj ....... 0xj  ~ Tij - - . - - ~ j  Hij df~. (2.20) 

From this expression, it seems rather natural to define the generalized 
forces corresponding to the fluxes Qj, Tij and Hij respectively by 

00 "I 0e'Ivi 00"Ibi 
J 0Xj ' 0Xj ~Xj 

3. Evolution criterion 

We now show that in the case of an incompressible conducting fluid, sub- 
mitred to time independent boundary conditions, the rate of entropy pro- 
duction can only decrease when the fluxes J~ are maintained constant, 
namely 
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r f 8Xa 
St = J~ -~"  d~  _ O, (3.1) 

the sign equality refers to the steady state. 
Let us derive in expression (2.20) the forees with regard to the time, 

we obtain: 

8 x P  
Ti j 

- 

L e t  u s  p e r m u t e  s p a t i a l  and  t i m e  d e r i v a t i v e s  and  i n t e g r a t e  b y  p a r t s ;  the  
b o u n d a r y  e o n d i t i o n s  b e i n g  t i m e  i n d e p e n d e n t ,  the s u r f a c e  i n t e g r a l  v a n i s h e s  and  
eq. (3 .2 )  b e c o m e s  

8 t  - L 8t 8 t  p-'~ +pe+p~ a t  8 t  

8 ~-1 bi 8 Pb i l  
(3.3) 

Introducing now in this equation the thermodynamic relation 

8t8c - e ~--~8(? (e > 0), (3.4) 

where c is the specific heat, we finally obtain: 

8t  = - e-2e ~-~ + P@-I + p e ' l  ~8t / ~--I df~ < 0, (3.5) 

which is undoubtedly a negative quantity, as requested. 
Generally speaking, the quantity 8xP/at is not a total differential. 

However, as shown by Glansdorff and Prigogine [2-5], it is possible to 
write 8• 8t in the form of a total differential by linearizing around the 
stationary state, so that the techniques and the results of the calculus of 
variation can be used. In particular, the Euler-Lagrange equations of the 
variational problem are the steady state conservation equations; this property 
is illustrated in the following example. 

4. Harlrnann's flow 

Let us consider the flow of an incompressible viscous fluid between two 
parallel solid planes when an uniform and constant external magnetic in- 
duction b o is applied perpendicular to the planes. 

It is natural to assume that the fluid velocity is everywhere in the same 
direction (we take it as the x I direction) and that the temperature is con- 
stant and uniform throughout the fluid. The components of the velocity are 
then 

v l ,  0, 0. (4.1) 

In add i t i on ,  the c o m p o n e n t s  of  the  m a g n e t i c  f i e l d ,  i . e .  the s u m  of  the  
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applied field and the induced field, are supposed to be given by 

bl, o, b3, 

w i t h  b 3 = b 0 = c o n s t a n t ,  ( 4 . 2 )  

L e t  u s  n o w  c a l c u l a t e  8xP/8 t in  the  e a s e  of  H a r t m a n n ' s  f l ow .  T h i s  i m p l i e s  
t h a t  w e  p r e l i m i n a r i l y  d e t e r m i n e  the  e x p r e s s i o n s  o f  t he  f l u x e s  Hij and Ti j  ; 
i t  i s  no t  n e c e s s a r y  to  e v a l u a t e  Qj b e e a u s e  the  c o r r e s p o n d i n g  f o r c e  8 0 " l / 8 x j  
is  e q u a l  to  z e r o  h e r e .  T h e  c o m p o n e n t s  Hij and  Ti j  w h i c h  a r e  n e e d e d  to  
go further in the calculations are respectively: 

and  

b b l  
H n = - O k  " ~ 1 '  ( 4 . 3 )  

8 b l  
H13 = - 0 v l b o  - 0X  O-~a, ( 4 . 4 )  

T l l  = p+ovl 2+�89 ( 4 . 5 )  

a v 1 
T13 = - r ]  O x  a o b ~  ( 4 . 6 )  

Expression (3.2) of 8 x P / S t  r e d u c e s  n o w  to :  

8 x P  
- - =  - 0  -1 
8 t  \SXl)]Tl1+ [ 

+ H~ di-I ~_ 0 ( 4 . 7 )  

a n d ,  w i t h  the  h e l p  o f  e q s .  ( 4 . 3 )  to  ( 4 . 6 ) :  

2 

0 + 

+vl~k~/ j  da~0 (4.8) 

It is possible to write 8xP/St in the form of a total differential provided 
we restrict ourselves to fluctuations in the neighbourhood of the stationary 
state. Indeed, supposing the steady state characterized by the distribution 

0 0 
b I , v 1 

and linearizing around the steady state, eq. (4.8) becomes(':"): 

(*) It is not necessary to label 0, 9 and X with the supercript o because these quantities are constant. 
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axP 01  f : _  - 1 ~ + at : ~-~--L. [pO+p(v~)2 + I b 2 :(bl ) ] ~ ~)vl 17] \~X3//~Vl~ 2 

-0 b1'~2 ~0 b i12 (b; Ovl O 'b1_~ I 
+ �89 ox ~x---~H + �89 oX~ax3 / + pb0 --a~3 + :1 -gv23~J" da 

= 0"1 ~ t  / ~) dr2 --~ 0 , (4.9) 

where  the in t eg rand  ~ of (4.9) is given by: 

2 
[p 0 2 1 2 1 b 0 2] ' 'V1 ...{_ 1 ~loqV11 

~) = _ o + p ( v O  + : b  0 - : ( 1 )  ~X 1 \ a x a /  

)t/_~ b l l  2 (~ b112 (b ~vl 0 ~bl~ 
+ ~ o /~C/ + ~ 0x \~C~/+ ob0 ~ ~ + vl a-~/ (4. :0) 

It is impor t an t  to note that  funct ional  ~ depends  on both the s t eady  s ta te  
va r i ab l e s  b ~ v~ and the usual  v a r i a b l e s  bl, v I and takes  his m i n i m u m  
values  in the s t a t i o n a r y  s ta te .  

The E u l e r - L a g r a n g e  equat ions  c o r r e s p o n d i n g  to (4.9) and (4.10) n a m e l y  

o oq) ~ 

axj ffV~ 1 av: 
~a xjl 

a a~ a~ 
O"X j ~ b i  / a b  1 

- O, 

- O, 

(4.11) 

(4.12) 

a s soc i a t ed  with the s u b s i d i a r y  Conditions 

0 
v~ = v~, b:- b ~ (4.13) 

and the fact  that bo is cons tan t  and un i fo rm  give: 

: o 2 ~ v~ 

Ox I 

o x - - ~ t ~ j  Po-~3 a x  3 + b ~  ~ : o. 

= O,  (4 .14 )  

(4 .15)  

M o r e o v e r ,  the m a g n e t o h y d r o d y n a m i e  r e l a t ions  (2.1) and (2.7) 

V .  V = 0 and ~7. b = 0 

imply that 

av~ I ab ~ 
- 0 and - 0 

~X 1 ~X 1 

so that the expressions (4. 14) and (4.15) may finally be written in the 
form 
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0 Ob~ ~2 Vl o 
r/ ~ +  Ob 0 = ~p 

b 0 
~- a2-~ + b o ~ =  0 

~ x  2 a x  3 

G.Lebon 

( 4 . 1 6 )  

( 4 . 1 7 )  

w h i c h  a r e  t h e  w e l l - k n o w n  s t e a d y  s t a t e  e q u a t i o n s  o f  H a r t m a n n ' s  f l o w  ( s e e  
f o r  i n s t a n c e  r e f .  10) .  

T h e  a u t h o r  w i s h e s  to  r e c o r d  h i s  g r a t i t u d e  to  P r o f e s s o r  N i h o u l  f o r  h i s  
i n t e r e s t  i n  t h i s  r e s e a r c h  a n d  h i s  h e l p f u l  c o m m e n t s  o n  t h e  m a n u s c r i p t .  
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